We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

Cost Volume Profit Analysis Argumentative

The whole doc is available only for registered users
  • Pages: 4
  • Word count: 785
  • Category:

A limited time offer! Get a custom sample essay written according to your requirements urgent 3h delivery guaranteed

Order Now

1. Explain the nature of CVP Analysis and name and illustrate planning and Decision-making situations in which it may be used,
2. Separate semi-variable (mixed) costs into their fixed and variable components. 3. Construct profit/volume charts given selling price, costs and volume data. 4. Construct a cost/volume/profit (CVP) model representing the data in a marginal costing profit and loss account 5. Define and calculate the breakeven point using various techniques 6. Apply the CVP model in multi-product situations.

7. Calculate budgeted sales volume required for a given target net income. 8. Calculate and explain the margin of safety.
9. Identify and explain the limitations of C-V-P analysis


The following major topics are covered in this chapter (related learning objectives are listed for each topic).

1.Break-even point in units

2.Break-even point in sales dollars

3.Multiple-product analysis

4.Graphical representation of CVP relationships

5.Changes in the CVP variables



Cost-volume-profit analysis enables a firm to determine the sales (in units or dollars) necessary to attain a desired level of profit. CVP analysis is useful in assessing the effect of operating changes (such as changes in selling price or variable cost or fixed costs) upon profit.

The break-even point is the point where total revenues equal total expenses, the point where profit equals zero. This can be expressed as:

Total revenue – Total variable cost – Total fixed cost = $0 or
Total revenue = Total variable cost + Total fixed cost

A.Shortcut to Calculating Break-Even Units

To determine how many units must be sold in order to break even, solve for X (the number of units) in the following equation: Total revenue = Variable cost + Fixed cost

(Selling price per unit)(X) = (Variable cost per unit)(X) + Fixed cost

B.Unit Sales Needed to Achieve Targeted Profit

In order to earn a desired profit, total revenues must equal variable costs, fixed costs, and desired profit.

Total revenue = Total variable cost + Total fixed cost + Desired profit

To determine how many units must be sold in order to earn a desired profit, solve for X (the number of units) in the following equation:

Total revenue = Total variable cost + Total fixed cost + Desired profit (Selling price per unit)(X) = (Variable cost per unit)(X) + Total fixed cost + Desired profit

After fixed costs are covered, the contribution margin per unit above break-even volume is profit per unit.

C.After-Tax Profit Targets

By substituting [(After-tax profit)/(1 – Tax rate)] for before-tax profit into the equation for CVP analysis, the equation becomes: [pic]

D.Break-Even Point in Sales Dollars

Break-even in sales dollars can be calculated using the following equation:


Harvee Manufacturing Company produces two products, X and Y. The following information is presented for both products: X Y

Selling price per unit $46 $36

Variable cost per unit $38 $24

Sales Mix31

Total fixed costs are $234,000.

Determine the company’s break-even point in units.


SPx – VCx – FC = 0 at the breakeven point
Let: x be units of Y.
3x be units of X
[46(3x) + 36x] – [38(3x) + 24x] – 234,000 = 0 [138x + 36x] – [114x + 24x] – 234,000 = 0
174x – 138x = 234,000
x = 234,000 = 6500 units
B/E Point : 6,500 units of Y (x)
19,500 units of X (3x)


This section discusses the cost-volume-profit graph and profit-volume graphs.

The cost-volume-profit graph depicts the relationships among cost, volume, and profits.

The point where the total revenue line and the total cost line intersect is the break-even point.

Limitations of CVP analysis include:

 The analysis assumes a linear revenue function and a linear cost function. The analysis assumes that price, total fixed costs, and unit variable costs can be accurately identified and remain constant over the relevant range. The analysis assumes that units produced are sold.

 For multiple-product analysis, the sales mix is assumed to be known. The selling prices and costs are assumed to be known with certainty.


Margin of Safety

Margin of safety is defined as the difference between sales (actual or expected) and the break-even volume.

The margin of safety is a measure of how far sales can drop until the break-even point is reached.

The margin of safety expressed in dollars is the difference between budgeted sales and break-even sales.

Margin of safety = Expected sales – Sales at break-even

Related Topics

We can write a custom essay

According to Your Specific Requirements

Order an essay
Materials Daily
100,000+ Subjects
2000+ Topics
Free Plagiarism
All Materials
are Cataloged Well

Sorry, but copying text is forbidden on this website. If you need this or any other sample, we can send it to you via email.

By clicking "SEND", you agree to our terms of service and privacy policy. We'll occasionally send you account related and promo emails.
Sorry, but only registered users have full access

How about getting this access

Your Answer Is Very Helpful For Us
Thank You A Lot!


Emma Taylor


Hi there!
Would you like to get such a paper?
How about getting a customized one?

Can't find What you were Looking for?

Get access to our huge, continuously updated knowledge base

The next update will be in:
14 : 59 : 59