 We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

# Trigonometric Functions The whole doc is available only for registered users

A limited time offer! Get a custom sample essay written according to your requirements urgent 3h delivery guaranteed

Order Now

EXAMPLE: Use the Table below to ﬁnd the six trigonometric functions of each given real number t. π π (a) t = (b) t = 3 2

EXAMPLE: Use the Table below to ﬁnd the six trigonometric functions of each given real number t. π π (a) t = (b) t = 3 2 Solution: (a) From the Table, we see that the terminal point determined by √ t = √ is P (1/2, 3/2). Since the coordinates are x = 1/2 and π/3 y = 3/2, we have √ √ π 3 3/2 √ π 1 π sin = cos = tan = = 3 3 2 3 2 3 1/2 √ √ π 3 2 3 π π 1/2 csc = = sec = 2 cot = √ 3 3 3 3 3 3/2 (b) The terminal point determined by π/2 is P (0, 1). So π π 1 π 0 π cos = 0 csc = = 1 cot = = 0 sin = 1 2 2 2 1 2 1 But tan π/2 and sec π/2 are undeﬁned because x = 0 appears in the denominator in each of their deﬁnitions. π . 4 Solution: √ From the Table above, we see that √ terminal point determined by t = π/4 is the √ √ P ( 2/2, 2/2). Since the coordinates are x = 2/2 and y = 2/2, we have √ √ √ π 2 2 2/2 π π sin = =1 cos = tan = √ 4 2 4 2 4 2/2 √ π √ π π √ 2/2 csc = 2 sec = 2 cot = √ =1 4 4 4 2/2 EXAMPLE: Find the six trigonometric functions of each given real number t =

Values of the Trigonometric Functions

EXAMPLE: π π (a) cos > 0, because the terminal point of t = is in Quadrant I. 3 3 (b) tan 4 > 0, because the terminal point of t = 4 is in Quadrant III. (c) If cos t < 0 and sin t > 0, then the terminal point of t must be in Quadrant II. EXAMPLE: Determine the sign of each function. 7π (b) tan 1 (a) cos 4 Solution: (a) Positive (b) Positive EXAMPLE: Find each value. 2π π (a) cos (b) tan − 3 3 19π 4

(c) sin

EXAMPLE: Find each value. π 19π 2π (b) tan − (c) sin (a) cos 3 3 4 Solution: (a) Since 2π 3π − π 3π π π = = − =π− 3 3 3 3 3 the reference number for 2π/3 is π/3 (see Figure (a) below) and the terminal point of 2π/3 is in Quadrant II. Thus cos(2π/3) is negative and

(b) The reference number for −π/3 is π/3 (see Figure (b) below). Since the terminal point of −π/3 is in Quadrant IV, tan(−π/3) is negative. Thus

(c) Since

19π 20π − π 20π π π = = − = 5π − 4 4 4 4 4 the reference number for 19π/4 is π/4 (see Figure (c) below) and the terminal point of 19π/4 is in Quadrant II. Thus sin(19π/4) is positive and

EXAMPLE: Find each value. 2π 4π (a) sin (b) tan − 3 3

(c) cos

14π 3

EXAMPLE: Find each value. 4π 2π (b) tan − (a) sin 3 3 Solution: (a) Since

(c) cos

14π 3

2π 3π − π 3π π π = = − =π− 3 3 3 3 3 the reference number for 2π/3 is π/3 and the terminal point of 2π/3 is in Quadrant II. Thus sin(2π/3) is positive and √ 2π 3 π sin = sin = 3 3 2 (b) Since 4π 3π + π 3π π π =− =− − = −π − 3 3 3 3 3 the reference number for −4π/3 is π/3 and the terminal point of −4π/3 is in Quadrant II. Thus tan (−4π/3) is negative and − tan − (c) Since 4π 3 = −
tan π 3 √ =− 3

14π 15π − π 15π π π = = − = 5π − 3 3 3 3 3 the reference number for 14π/3 is π/3 and the terminal point of 14π/3 is in Quadrant II. Thus cos(14π/4) is negative and 14π π 1 cos = − cos = − 3 3 2 EXAMPLE: Evaluate 7π π (b) cos (a) sin 3 6 11π 4 17π 3 17π 2 121π 6

(c) tan

(d) sec

(e) csc

(f) cot

EXAMPLE: Evaluate 7π 11π 17π 17π 121π π (b) cos (c) tan (d) sec (e) csc (f) cot (a) sin 3 6 4 3 2 6 Solution: (a) The reference number for π/3 is π/3. Since the terminal point of π/3 is in Quadrant I, sin(π/3) is positive. Thus √ π 3 π sin = sin = 3 3 2 (b) Since 7π = 6π+π = 6π + π = π + π , the reference number for 7π/6 is π/6 and the terminal 6 6 6 6 6 point of 7π/6 is in Quadrant III. Thus cos(7π/6) is negative and √ π 7π 3 = − cos = − cos 6 6 2 (c) Since 11π = 12π−π = 12π − π = 3π − π , the reference number for 11π/4 is π/4 and the 4 4 4 4 4 terminal point of 11π/6 is in Quadrant II. Thus tan(11π/4) is negative and tan π 11π = − tan = −1 4 4

(d) Since 17π = 18π−π = 18π − π = 6π − π , the reference number for 17π/3 is π/3 and the 3 3 3 3 3 terminal point of 17π/3 is in Quadrant IV. Thus sec(17π/3) is positive and sec 17π π = sec = 2 3 3

(e) Since 17π = 16π+π = 16π + π = 8π + π , the reference number for 17π/2 is π/2 and the 2 2 2 2 2 terminal point of 17π/2 is in Quadrant I (II). Thus csc(17π/2) is positive and csc π 17π = csc = 1 2 2

(f) Since 121π = 120π+π = 120π + π = 20π + π , the reference number for 121π/6 is π/6 and the 6 6 6 6 6 terminal point of 121π/6 is in Quadrant I. Thus cot(121π/6) is positive and cot π √ 121π = cot = 3 6 6

EXAMPLE: Use the even-odd properties of the trigonometric functions to determine each value. π π π (b) cos − (c) csc − (a) sin − 6 4 3 6

EXAMPLE: Use the even-odd properties of the trigonometric functions to determine each value. π π π (a) sin − (b) cos − (c) csc − 6 4 3 Solution: We have √ π 1 π π π 2 = − sin = − (b) cos − = cos = (a) sin − 6 6 2 4 4 2 √ π 2 3 π (c) csc − = − csc = − 3 3 3

Fundamental Identities

Proof: The reciprocal identities follow immediately from the deﬁnition. We now prove the Pythagorean identities. By deﬁnition, cos t = x and sin t = y, where x and y are the coordinates of a point P (x, y) on the unit circle. Since P (x, y) is on the unit circle, we have x2 + y 2 = 1. Thus sin2 t + cos2 t = 1 Dividing both sides by cos2 t (provided cos t = 0), we get sin2 t cos2 t 1 + = 2t 2t cos cos cos2 t sin2 t cos2 t 2

+1=

1 cos2 t

tan2 t + 1 = sec2 t We have used the reciprocal identities sin t/ cos t = tan t and 1/ cos t = sec t. Similarly, dividing both sides of the ﬁrst Pythagorean identity by sin2 t (provided sin t = 0) gives us 1 + cot2 t = csc2 t. 3 and t is in Quadrant IV, ﬁnd the values of all the trigonometric EXAMPLE: If cos t = 5 functions at t. 7

3 and t is in Quadrant IV, ﬁnd the values of all the trigonometric EXAMPLE: If cos t = 5 functions at t. Solution: From the Pythagorean identities we have sin2 t + cos2 t = 1 sin2 t + 3 5 2

=1 9 16 = 25 25

sin2 t = 1 − sin t = ± 4 5

4 Since this point is in Quadrant IV, sin t is negative, so sin t = − . Now that we know both 5 sin t and cos t, we can ﬁnd the values of the other trigonometric functions using the reciprocal identities: sin t = − csc t = 4 5 cos t = sec t = 3 5 1 5 = cos t 3 tan t = cot t = −4 4 sin t = 35 = − cos t 3 5 1 3 =− tan t 4

1 5 =− sin t 4

5 and t is in Quadrant II, ﬁnd the values of all the trigonometric EXAMPLE: If cos t = − 13 functions at t. Solution: From the Pythagorean identities we have sin2 t + cos2 t = 1 sin2 t + − 5 13 2 =1

sin2 t = 1 −

25 144 = 169 169 12 sin t = ± 13

12 Since this point is in Quadrant II, sin t is positive, so sin t = . Now that we know both 13 sin t and cos t, we can ﬁnd the values of the other trigonometric functions using the reciprocal identities: sin t = csc t = 12 13 1 13 = sin t 12 cos t = − sec t = 5 13 12 12 sin t = 135 = − cos t 5 − 13 1 5 cot t = =− tan t 12

tan t =

1 13 =− cos t 5

EXAMPLE: Write tan t in terms of cos t, where t is in Quadrant III. 8

EXAMPLE: Write tan t in terms of cos t, where t is in Quadrant III. Solution: Since tan t = sin t/ cos t, we need to write sin t in terms of cos t. By the Pythagorean identities we have sin2 t + cos2 t = 1 sin2 t = 1 − cos2 t √ sin t = ± 1 − cos2 t

Since sin t is negative in Quadrant III, the negative sign applies here. Thus √ 1 − cos2 t sin t =− tan t = cos t cos t EXAMPLE: Write tan t in terms of cos t, where t is in Quadrant I. Solution: Since tan t = sin t/ cos t, we need to write sin t in terms of cos t. By the Pythagorean identities we have sin2 t + cos2 t = 1 sin2 t = 1 − cos2 t √ sin t = ± 1 − cos2 t

Since sin t is positive in Quadrant I, the positive sign applies here. Thus √ 1 − cos2 t sin t = tan t = cos t cos t EXAMPLE: Write cos t in terms of tan t, where t is in Quadrant II. Solution: Since tan t = sin t/ cos t, we need to write sin t in terms of cos t. By the Pythagorean identities we have sin2 t + cos2 t = 1 sin2 t = 1 − cos2 t

so tan2 t =

1 − cos2 t sin2 t = . Multiplying both sides by cos2 t, we get cos2 t cos2 t cos2 t tan2 t = 1 − cos2 t cos2 t tan2 t + cos2 t = 1 cos2 t(tan2 t + 1) = 1 cos2 t = 1 tan t + 1 2

tan2 t + 1 Since cos t is negative in Quadrant II, the negative sign applies here. Thus 1 cos t = − √ 2 tan t + 1 9

cos t = ± √

##### Related Topics

We can write a custom essay

Order an essay 300+
Materials Daily 100,000+ Subjects
2000+ Topics Free Plagiarism
Checker All Materials
are Cataloged Well

Sorry, but copying text is forbidden on this website. If you need this or any other sample, we can send it to you via email.

Sorry, but only registered users have full access

immediately?

Thank You A Lot! Emma Taylor

online

Hi there!
Would you like to get such a paper?
How about getting a customized one?

Can't find What you were Looking for?