We use cookies to give you the best experience possible. By continuing we’ll assume you’re on board with our cookie policy

Nucleophilic Substitution Reaction

The whole doc is available only for registered users

A limited time offer! Get a custom sample essay written according to your requirements urgent 3h delivery guaranteed

Order Now

Experimental data from nucleophilic substitution reactions on substrates that have optical activity (the ability to rotate plane-polarized light) shows that two general mechanisms exist for these types of reactions. The first type is called an SN2 mechanism. This mechanism follows second-order kinetics (the reaction rate depends on the concentrations of two reactants), and its intermediate contains both the substrate and the nucleophile and is therefore bimolecular. The terminology SN2 stands for “substitutiThe second type of mechanism is an SN1 mechanism. This mechanism follows first-order kinetics (the reaction rate depends on the concentration of one reactant), and its intermediate contains only the substrate molecule and is therefore unimolecular. The terminology SN1 stands for “substitution nucleophilic unimolecular.”

SN2 mechanism

The alkyl halide substrate contains a polarized carbon halogen bond. The SN2 mechanism begins when an electron pair of the nucleophile attacks the back lobe of the leaving group. Carbon in the resulting complex is trigonal bipyramidal in shape. With the loss of the leaving group, the carbon atom again assumes a pyramidal shape; however, its configuration is inverted. on nucleophilic bimolecular.”SN2 reactions require a rearward attack on the carbon bonded to the leaving group. If a large number of groups are bonded to the same carbon that bears the leaving group, the nucleophile’s attack should be hindered and the rate of the reaction slowed. This phenomenon is called steric hindrance. The larger and bulkier the group(s), the greater the steric hindrance and the slower the rate of reaction. Table 1 shows the effect of steric hindrance on the rate of reaction for a specific, unspecified nucleophile and leaving group. Different nucleophiles and leaving groups would result in different numbers but similar patterns of resul SN2 reactions give good yields on 1° (primary) alkyl halides, moderate yields on 2° (secondary) alkyl halides, and poor to no yields on 3° (tertiary) alkyl halides.

Solvent effects

For protic solvents (solvents capable of forming hydrogen bonds in solution), an increase in the solvent’s polarity results in a decrease in the rate of SN2 reactions. This decrease occurs because protic solvents solvate the nucleophile, thus lowering its ground state energy. Because the energy of the activated complex is a fixed value, the energy of activation becomes greater and, therefore, the rate of reaction decreases.

Polar aprotic solvents (solvents that cannot form hydrogen bonds in solution) do not solvate the nucleophile but rather surround the accompanying cation, thereby raising the ground state energy of the nucleophile. Because the energy of the activated complex is a fixed value, the energy of activation becomes less and, therefore, the rate of reaction increases.ts. The smaller activation energy leads to the more rapid reaction.

SN1 mechanism

The second major type of nucleophilic substitution mechanism is the SN1 mechanism. This mechanism proceeds via two steps. The first step (the slow step) involves the breakdown of the alkyl halide into an alkyl carbocation and a leaving group anion. The second step (the fast step) involves the formation of a bond between the nucleophile and the alkyl carbocation.

Because the activated complex contains only one species—the alkyl carbocation—the substitution is considered unimolecular.

Carbocations contain sp2 hybridized orbitals and thus have planar structures. SN1 mechanisms proceed via a carbocation intermediate, so a nucleophile attack is equally possible from either side of the plane. Therefore, a pure, optically active alkyl halide undergoing an SN1 substitution reaction will generate a racemic mixture as a product.

Related Topics

We can write a custom essay

According to Your Specific Requirements

Order an essay
Materials Daily
100,000+ Subjects
2000+ Topics
Free Plagiarism
All Materials
are Cataloged Well

Sorry, but copying text is forbidden on this website. If you need this or any other sample, we can send it to you via email.

By clicking "SEND", you agree to our terms of service and privacy policy. We'll occasionally send you account related and promo emails.
Sorry, but only registered users have full access

How about getting this access

Your Answer Is Very Helpful For Us
Thank You A Lot!


Emma Taylor


Hi there!
Would you like to get such a paper?
How about getting a customized one?

Can't find What you were Looking for?

Get access to our huge, continuously updated knowledge base

The next update will be in:
14 : 59 : 59